Math Logic: Model Theory & Computability Lecture 13

Upward Löwenheim-Skolen theorems.

bocall pet by the weak downward L-S, every satisficable 5-theory T has a model of cardinality & max (101, 58.). We now prove the apraid version:

Weak appraid Löwenheim-Skolen theoren. For a J-then T, the following are equivalent: (1) For each nEW, T has a model of cardinality z. u. (2) For each cardinal K z max (151, 980), T has a model of cardinality = K. (3) I has an infinite model. Proof. $(2) \Rightarrow (3) \Rightarrow (1)$ is trivial, so we prove $(1) \Rightarrow (2)$. Suppose (1) and the on intivite random $K \gg |\sigma|$. Let $\tilde{\sigma} = \sigma \vee \{c_{\alpha} : \alpha \in K_{\alpha}\}$ so that the c_{β} are new constants tarbe and define T:= TV & Cat Cz: d, BER distinct?. Then T is finitely ratioficable beese any hinte subtron To ET will only wortain finitely achy sentences of the form Cat Cz and there is a model of T with at least the many distinct elements. By compartment, T has a model B. By the downard L-S, there is an elementary substracture $\tilde{A} \approx \tilde{B}$ of cardinality $\leq \max(161, 560) = K$ hence $|\tilde{A}| = K$ because $\tilde{A} > L_{+}\tilde{B} + Mark 2 = 0$ the left of the first of the fi hence $|\tilde{A}| = \kappa$ because $\tilde{A} = \zeta c_{\tilde{a}}^{\tilde{A}} : d \in \kappa_{\tilde{a}}^{\tilde{a}}$ and the latter has cardinality R. By clementarity, A = T, hence its reduct A to the J-strantone is still a model of T and still has cardinality K,

<u>Cor.</u> It a J-theory T admits arbitrarily large finite models here it admits on infinite model.

Examples. (a) The class of yelic (i.e. 1-secreted) groups is not axiomatizable
been huy are all countrable and
$$(\mathbb{Z}, 0, t)$$
 is infinite and cyclic.
(8) The day of finitely generated groups is not axiomatizable because key are all
countrable and $(\mathbb{Z}, 0, t)$ is infinite and finitely generated.
Note that for a given orstantine A, by delay $T := Th(A)$, we can get a construc-
time B of earthinality K that is deventarily equivalent to A. However, to make
this B an elementary extension of A, i.e. $B \neq A$, we need B to subject
where then just $Th(A)$, nearely, the elementary diagram of A...
Def let A be a or-structure and extend the signature of by additing one now
construct for and element of A:
 $T_A := O \cup \{c_A: A \in A\},$
where the ca are constant symbols not appearing in o. The notweed expansion
of A to a structure is the capacitien $A := (A, B_A)$ in other words, for
each extended or termina $\Psi(R)$ and $\overline{a} := (a, a, ..., a_A) \in A^{+}$ where $k := |R|$,
 $\Psi(c_R) \in E[Diag(A) = aid $\overline{a} := (a, a, ..., a_A)$.
We also durch by Diag (A) iff $A \models \Psi(\overline{a}),$
where $C_R := (c_A, (c_R), ..., c_R)$.
We also durch by Diag (A) the interest of A for the quantitier take
 σ_A -servences, and call this the diagram of A for the quantitier take diagram of A.
 $We also durch a C = Structures.$ If B admits an expansion \overline{B} to a system of A.
 $Uerman tay, B = 0 = Structures.$ If B admits an expansion \overline{B} to a system of A.$

there is an isomorphic copy of B, chande it by B', such that A & B'.

Loof. Ut B = ElDig(A). Then the function h: A → B given by a → C^B/a is an elementary embedding of A into B bene for each entended or formed U(x) and a ∈ A^{|x|}, we have Mt A = U(a) (=> U(Ca) ∈ E|Diag(A) (=> B = U(Ca) (=> B = U(h(a)), there c_B := (c_a, c_a, ..., c_a) if a = (a, a, ..., a_k). Replacing h(A) inside B with A, we get an isomorphic copy B' of B but now A ≤ B'.

Upward Löwenheim-Skolen Theorem. For every intivide or-structure A and cardinal K=max (1A1,101), Kere is an elementary extension B of A of cardinality K.

Proof. By the weak upward L-S applied to the τ_A -theory ElDiay(A), there is a model $\tilde{B} \models ElDiag(A)$ of cardinality R, thus its reduct \underline{B} to a τ -structure satisfies $\underline{A} \xrightarrow{}_{e} \underline{B}$ by the above lemma. Hence there is $\underline{B}' \cong \underline{B}$ s.t. $\underline{A} \neq \underline{B}'$. \Box